INFO 246-13
Information Technology Tools and Applications – Advanced Topic: Web/Text/Data Mining for LIS
Fall 2017 Syllabus
Dr. Geoffrey Z. Liu
E-mail
Other contact information: telephone: (408) 924-2467
Office Location: Clark Hall 418L, SJSU Campus
Office Hours: Email, Blackboard IM, and in-person by appointment
Syllabus Links Textbooks CLOs Competencies Prerequisites |
Additional Links Online Resource Text/Data Mining Tools |
Resources |
Canvas Information: Courses will be available beginning August 23rd, 6 am PT unless you are taking an intensive or a one-unit or two-unit class that starts on a different day. In that case, the class will open on the first day that the class meets.
You will be enrolled into the Canvas site automatically.
Class activities will be carried out in both the Canvas and Blackboard Collaborate (previously known as Elluminate) systems.
Course Description
This course is an introduction to web, text, and data mining from the perspective of library and information services. Students will learn basic concepts, approaches, and practical techniques of web/text/data mining by conducting group topical research and completing one individual mining project (consisting of ten stages/exercises) with Rapid Miner (a free data mining software with extensions for web/text processing).
Course Requirements
Assignments
Students' performance in this class will be evaluated on the basis of the following assignments,
- Self-introduction (5%) -- CLO #1, #2
- Group online discussion (two sessions, 5% each) -- CLO #1, #2
- Lead/moderating a thread
- Participation by responding
- Group report of topical research (15%) -- CLO #1, #2, #3
- Individual mining project (10 stages, 7% each) -- CLO #4, #5
- RapidMiner installation/configuration | Excel data import/exporting
- Reading/writing text file | Correlation analysis
- Web crawling and text extraction | Preprocessing of texts
- Document clustering | Constructing random set for model training
- Building | testing a data model (NN/Bayesian classifier)
At the start of semester, students will be randomly assigned into groups (of optimal size five) to complete topical research and conduct online discussion. For the group topical research, each group will choose a topic of focus and work collaboratively to produce a final written report, by reading/summarizing book chapters and reviewing recent scholarly publications.
Throughout the semester, students will conduct two sessions of online discussion in their group forums, to share findings and to comment on related issues. The first session is on the topic "Web/text/data mining in the library and information science fields", and the second session on the topic "Ethical/social issues related to big data and data mining". In each session, every member in a group will create/moderate one thread in the group's forum, by making a lead post. The lead post may be critical review of a scholarly article, digested summary of book chapter, analysis of a related project, or reflection on personal experience/observation. Reference and article PDF should be included when applicable. Others will participate by responding.
Detailed instruction on each stage of the individual mining project will be provided in the Canvas class site, along with other course materials.
Of both the group topical research and the individual mining project, students are encouraged (but not required) to record presentations in Blackboard Collaborate. The presentation recordings may be used later for INFO289 e-portfolio as competency evidence or for job interview as demo of skills.
All written work should be professionally prepared following the APA editorial style and established convention of academic writing, free of grammatical errors and spelling mistakes. Tutorial, assistance, and resources for improving academic writing skills are available at the Writing Resources Center.
It is students' responsibility to submit and maintain the electronic version of their works until the final grade is issued.
Course Calendar
(Brief and tentative. A final/extensive version will be provided in the Canvas class site.)
Session |
Topic |
Individual Tasks & Dues |
Group Tasks & Dues |
0 8/27 |
Orientation
|
Blackboard Collaborate Self Intro (in class forum) |
. |
1 8/28 |
Introduction
|
Ex-1: Install RapidMiner |
. |
2 Sat. 9/2 |
Lab Session 1: Initiation on Rapid Minor (mandatory for whole class) |
(Self Intro End) (Ex-1 completed. No submission) Ex-2: First Process: Import/export excel data |
GR: Propose a topic
|
3 9/11 |
Survey of Software Tools
|
(Ex-2 Due) Ex-3: Read/write text files |
GR: Topic approved |
4 9/18 |
Statistical Data Analysis (for mining)
|
(Ex-3 Due) Ex-4: Correlation analysis |
GD-1: Web/Text/Data mining in LIS |
5 9/25 |
Web Mining (Content and Structure)
|
(Ex-4 Due) Ex-5: Crawling & extracting web docs |
. |
6 Sat. 9/30- |
Lab Session 2: Web crawling & document extraction (Hourly timeslots for individual tutoring) |
. |
. |
7 10/10 |
NLP and Text Preprocessing
|
(Ex-5 Due) Ex-6: Preprocessing texts |
GD-1 End |
8 Sat. 10/14- |
Lab Session 3: Text Preprocessing (Hourly timeslots for individual meetings) |
. |
. |
9 10/23 |
Statistical Text Mining
|
(Ex-6 Due) Ex-7: Document clustering |
|
10 Sat. 10/28- |
Lab Session 4: Document clustering (Hourly timeslots for individual meetings) |
|
GD-2: Ethical/social issues |
11 11/6 |
Data Transformation & Modeling
|
(Ex-7 Due) Ex-8: Constructing random training set |
. |
12 Sat. 11/11- |
Lab Session 5: NN-based data modeling (Hourly timeslots for individual meetings) |
(Ex-8 Due) Ex-9: Building data model (NN classifier) |
. |
13 11/20 |
Transaction Log Analysis (Web Analytics)
|
. |
GD-2 End |
14 11/27 |
Competitive Intelligence
|
(Ex-9 Due) Ex-10: Testing data model (NN classifier) |
GR Report DUE |
15 12/4 |
Conclusion
|
(Ex-10 Due) |
. |
Notes:
* Ex-#: Stage of individual mining project (exercises); GR: Group topical research; GD-#: Group online discussion.
** Lab sessions 2-5 are individual meetings for 1-to-1 tutoring. Students will sign up for hourly timeslots on the specified day(s), using the Canvas appointment scheduling tool.
Grading
Students' work will be evaluated according to the following specific criteria:
- Basic content as required (70%)
- Originality and creativity (30%)
Letter grades will be assigned to all assignments, and online discussion will be graded quantitatively based on class/group average counts of postings. The Standard SJSU SLIS Grading Scale will be used to translate letter grades to points and vice versa to calculate a proportionate total of points for the final grade. No extra credit is offered for additional work to make up for missed assignment.
Late submission will not be accepted unless appropriate documentation of legitimate cause (such as unexpected medical urgency and/or personal hardship) for the delay is provided. Request for deadline extension will be treated the same as of Incomplete in accordance to the university/school policy.
Software Requirement
- Microsoft Excel (version 2009 or later, included in Microsoft Office)
- Screen capturer (such as the snipping tool of Windows)
- Rapid Miner Studio (application free for trial and academic use)
Course Workload Expectations
Success in this course is based on the expectation that students will spend, for each unit of credit, a minimum of forty-five hours over the length of the course (normally 3 hours per unit per week with 1 of the hours used for lecture) for instruction or preparation/studying or course related activities including but not limited to internships, labs, clinical practica. Other course structures will have equivalent workload expectations as described in the syllabus.
Instructional time may include but is not limited to:
Working on posted modules or lessons prepared by the instructor; discussion forum interactions with the instructor and/or other students; making presentations and getting feedback from the instructor; attending office hours or other synchronous sessions with the instructor.
Student time outside of class:
In any seven-day period, a student is expected to be academically engaged through submitting an academic assignment; taking an exam or an interactive tutorial, or computer-assisted instruction; building websites, blogs, databases, social media presentations; attending a study group;contributing to an academic online discussion; writing papers; reading articles; conducting research; engaging in small group work.
Course Prerequisites
INFO 246 has no prequisite requirements.
Course Learning Outcomes
Upon successful completion of the course, students will be able to:
- Describe key concepts and terminologies in the field of text, data, and Web mining.
- Describe major approaches and techniques of text, data, and Web mining.
- Discuss the roles of text, data, and Web mining in intelligence and knowledge discovery.
- Use a software tool to accomplish a reasonably sophisticated text, data, or Web mining task.
- Integrate, summarize, and report the findings of mining research.
Core Competencies (Program Learning Outcomes)
INFO 246 supports the following core competencies:
- E Design, query, and evaluate information retrieval systems.
- G Demonstrate understanding of basic principles and standards involved in organizing information such as classification and controlled vocabulary systems, cataloging systems, metadata schemas or other systems for making information accessible to a particular clientele.
- H Demonstrate proficiency in identifying, using, and evaluating current and emerging information and communication technologies.
- I Use service concepts, principles, and techniques to connect individuals or groups with accurate, relevant, and appropriate information.
Textbooks
Recommended Textbooks:
- Feldman, R., & Sanger, J. (2006). The text mining handbook: Advanced approaches in analyzing unstructured data. Cambridge University Press. Available through Amazon: 0521836573
- Han, J., & Kamber, M. (2005). Data mining: Concepts and techniques (2nd ed.). Morgan Kaufmann. Available through Amazon: 1558609016
- Hofmann, M., & Klinkenberg, R. (Ed.). (2013). RapidMiner: Data mining use cases and business analytics applications. Chapman & Hall/CRC. Available through Amazon: 1482205491
- Markov, Z., & Larose, D. (2007). Data mining the web: Uncovering patterns in web content, structure, and usage. John Wiley & Sons, Inc. Available through Amazon: 0471666556
- Zanasi, A. (2007). Text Mining and Its Applications to Intelligence, CRM and Knowledge Management. WIT Press. Available through Amazon: 1845641310
Grading Scale
The standard SJSU School of Information Grading Scale is utilized for all iSchool courses:
97 to 100 | A |
94 to 96 | A minus |
91 to 93 | B plus |
88 to 90 | B |
85 to 87 | B minus |
82 to 84 | C plus |
79 to 81 | C |
76 to 78 | C minus |
73 to 75 | D plus |
70 to 72 | D |
67 to 69 | D minus |
Below 67 | F |
In order to provide consistent guidelines for assessment for graduate level work in the School, these terms are applied to letter grades:
- C represents Adequate work; a grade of "C" counts for credit for the course;
- B represents Good work; a grade of "B" clearly meets the standards for graduate level work or undergraduate (for BS-ISDA);
For core courses in the MLIS program (not MARA, Informatics, BS-ISDA) — INFO 200, INFO 202, INFO 204 — the iSchool requires that students earn a B in the course. If the grade is less than B (B- or lower) after the first attempt you will be placed on administrative probation. You must repeat the class if you wish to stay in the program. If - on the second attempt - you do not pass the class with a grade of B or better (not B- but B) you will be disqualified. - A represents Exceptional work; a grade of "A" will be assigned for outstanding work only.
Graduate Students are advised that it is their responsibility to maintain a 3.0 Grade Point Average (GPA). Undergraduates must maintain a 2.0 Grade Point Average (GPA).
University Policies
Per University Policy S16-9, university-wide policy information relevant to all courses, such as academic integrity, accommodations, etc. will be available on Office of Graduate and Undergraduate Programs' Syllabus Information web page at: https://www.sjsu.edu/curriculum/courses/syllabus-info.php. Make sure to visit this page, review and be familiar with these university policies and resources.
In order to request an accommodation in a class please contact the Accessible Education Center and register via the MyAEC portal.
Download Adobe Acrobat Reader to access PDF files.
More accessibility resources.